3.115 \(\int \csc ^6(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=196 \[ \frac {b (3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 a f}+\frac {\sqrt {b} (3 a+4 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {(3 a+4 b) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{3 a f} \]

[Out]

1/2*(3*a+4*b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f+1/2*b*(3*a+4*b)*(a+b*tan(f*x+e)^2
)^(1/2)*tan(f*x+e)/a/f-1/3*(3*a+4*b)*cot(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2)/a/f-2/3*cot(f*x+e)^3*(a+b*tan(f*x+e)^
2)^(5/2)/a/f-1/5*cot(f*x+e)^5*(a+b*tan(f*x+e)^2)^(5/2)/a/f

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3663, 462, 453, 277, 195, 217, 206} \[ \frac {b (3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 a f}+\frac {\sqrt {b} (3 a+4 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {(3 a+4 b) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{3 a f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^6*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[b]*(3*a + 4*b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*f) + (b*(3*a + 4*b)*Tan[e
+ f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*a*f) - ((3*a + 4*b)*Cot[e + f*x]*(a + b*Tan[e + f*x]^2)^(3/2))/(3*a*f) -
 (2*Cot[e + f*x]^3*(a + b*Tan[e + f*x]^2)^(5/2))/(3*a*f) - (Cot[e + f*x]^5*(a + b*Tan[e + f*x]^2)^(5/2))/(5*a*
f)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 462

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(c^2*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[b
*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Ne
Q[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 3663

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff^(m + 1))/f, Subst[Int[(x^m*(a + b*(ff*x)^n)^p)/(c^2 + ff^2*x^2
)^(m/2 + 1), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (1+x^2\right )^2 \left (a+b x^2\right )^{3/2}}{x^6} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}+\frac {\operatorname {Subst}\left (\int \frac {\left (10 a+5 a x^2\right ) \left (a+b x^2\right )^{3/2}}{x^4} \, dx,x,\tan (e+f x)\right )}{5 a f}\\ &=-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}+\frac {(3 a+4 b) \operatorname {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{x^2} \, dx,x,\tan (e+f x)\right )}{3 a f}\\ &=-\frac {(3 a+4 b) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{3 a f}-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}+\frac {(b (3 a+4 b)) \operatorname {Subst}\left (\int \sqrt {a+b x^2} \, dx,x,\tan (e+f x)\right )}{a f}\\ &=\frac {b (3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 a f}-\frac {(3 a+4 b) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{3 a f}-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}+\frac {(b (3 a+4 b)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac {b (3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 a f}-\frac {(3 a+4 b) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{3 a f}-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}+\frac {(b (3 a+4 b)) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}\\ &=\frac {\sqrt {b} (3 a+4 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b (3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 a f}-\frac {(3 a+4 b) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{3 a f}-\frac {2 \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{3 a f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{5/2}}{5 a f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.17, size = 213, normalized size = 1.09 \[ \frac {\sqrt {\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)} \left (-\frac {2 \left (8 a^2+34 a b+3 b^2\right ) \cot (e+f x)}{a}-4 (2 a+3 b) \cot (e+f x) \csc ^2(e+f x)+\frac {15 \sqrt {2} (3 a+4 b) \cot (e+f x) F\left (\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{\sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}}}-6 a \cot (e+f x) \csc ^4(e+f x)+15 b \tan (e+f x)\right )}{30 \sqrt {2} f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^6*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*((-2*(8*a^2 + 34*a*b + 3*b^2)*Cot[e + f*x])/a - 4*(2*
a + 3*b)*Cot[e + f*x]*Csc[e + f*x]^2 - 6*a*Cot[e + f*x]*Csc[e + f*x]^4 + (15*Sqrt[2]*(3*a + 4*b)*Cot[e + f*x]*
EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])/Sqrt[((a + b + (a -
 b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b] + 15*b*Tan[e + f*x]))/(30*Sqrt[2]*f)

________________________________________________________________________________________

fricas [A]  time = 5.22, size = 655, normalized size = 3.34 \[ \left [\frac {15 \, {\left ({\left (3 \, a^{2} + 4 \, a b\right )} \cos \left (f x + e\right )^{5} - 2 \, {\left (3 \, a^{2} + 4 \, a b\right )} \cos \left (f x + e\right )^{3} + {\left (3 \, a^{2} + 4 \, a b\right )} \cos \left (f x + e\right )\right )} \sqrt {b} \log \left (\frac {{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - 2 \, b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) \sin \left (f x + e\right ) - 4 \, {\left ({\left (16 \, a^{2} + 83 \, a b + 6 \, b^{2}\right )} \cos \left (f x + e\right )^{6} - {\left (40 \, a^{2} + 193 \, a b + 12 \, b^{2}\right )} \cos \left (f x + e\right )^{4} + {\left (30 \, a^{2} + 125 \, a b + 6 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 15 \, a b\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{120 \, {\left (a f \cos \left (f x + e\right )^{5} - 2 \, a f \cos \left (f x + e\right )^{3} + a f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}, -\frac {15 \, {\left ({\left (3 \, a^{2} + 4 \, a b\right )} \cos \left (f x + e\right )^{5} - 2 \, {\left (3 \, a^{2} + 4 \, a b\right )} \cos \left (f x + e\right )^{3} + {\left (3 \, a^{2} + 4 \, a b\right )} \cos \left (f x + e\right )\right )} \sqrt {-b} \arctan \left (\frac {{\left ({\left (a - 2 \, b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left ({\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + 2 \, {\left ({\left (16 \, a^{2} + 83 \, a b + 6 \, b^{2}\right )} \cos \left (f x + e\right )^{6} - {\left (40 \, a^{2} + 193 \, a b + 12 \, b^{2}\right )} \cos \left (f x + e\right )^{4} + {\left (30 \, a^{2} + 125 \, a b + 6 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 15 \, a b\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{60 \, {\left (a f \cos \left (f x + e\right )^{5} - 2 \, a f \cos \left (f x + e\right )^{3} + a f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/120*(15*((3*a^2 + 4*a*b)*cos(f*x + e)^5 - 2*(3*a^2 + 4*a*b)*cos(f*x + e)^3 + (3*a^2 + 4*a*b)*cos(f*x + e))*
sqrt(b)*log(((a^2 - 8*a*b + 8*b^2)*cos(f*x + e)^4 + 8*(a*b - 2*b^2)*cos(f*x + e)^2 + 4*((a - 2*b)*cos(f*x + e)
^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x
 + e)^4)*sin(f*x + e) - 4*((16*a^2 + 83*a*b + 6*b^2)*cos(f*x + e)^6 - (40*a^2 + 193*a*b + 12*b^2)*cos(f*x + e)
^4 + (30*a^2 + 125*a*b + 6*b^2)*cos(f*x + e)^2 - 15*a*b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/((
a*f*cos(f*x + e)^5 - 2*a*f*cos(f*x + e)^3 + a*f*cos(f*x + e))*sin(f*x + e)), -1/60*(15*((3*a^2 + 4*a*b)*cos(f*
x + e)^5 - 2*(3*a^2 + 4*a*b)*cos(f*x + e)^3 + (3*a^2 + 4*a*b)*cos(f*x + e))*sqrt(-b)*arctan(1/2*((a - 2*b)*cos
(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(((a*b - b^2)*cos(f
*x + e)^2 + b^2)*sin(f*x + e)))*sin(f*x + e) + 2*((16*a^2 + 83*a*b + 6*b^2)*cos(f*x + e)^6 - (40*a^2 + 193*a*b
 + 12*b^2)*cos(f*x + e)^4 + (30*a^2 + 125*a*b + 6*b^2)*cos(f*x + e)^2 - 15*a*b)*sqrt(((a - b)*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2))/((a*f*cos(f*x + e)^5 - 2*a*f*cos(f*x + e)^3 + a*f*cos(f*x + e))*sin(f*x + e))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{6}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^6, x)

________________________________________________________________________________________

maple [C]  time = 1.83, size = 6988, normalized size = 35.65 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 202, normalized size = 1.03 \[ \frac {45 \, a \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b}}\right ) + 60 \, b^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b}}\right ) + 45 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right ) + \frac {60 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} b^{2} \tan \left (f x + e\right )}{a} - \frac {30 \, {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}}{\tan \left (f x + e\right )} - \frac {40 \, {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} b}{a \tan \left (f x + e\right )} - \frac {20 \, {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}}{a \tan \left (f x + e\right )^{3}} - \frac {6 \, {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}}{a \tan \left (f x + e\right )^{5}}}{30 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

1/30*(45*a*sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt(a*b)) + 60*b^(3/2)*arcsinh(b*tan(f*x + e)/sqrt(a*b)) + 45*sqrt(
b*tan(f*x + e)^2 + a)*b*tan(f*x + e) + 60*sqrt(b*tan(f*x + e)^2 + a)*b^2*tan(f*x + e)/a - 30*(b*tan(f*x + e)^2
 + a)^(3/2)/tan(f*x + e) - 40*(b*tan(f*x + e)^2 + a)^(3/2)*b/(a*tan(f*x + e)) - 20*(b*tan(f*x + e)^2 + a)^(5/2
)/(a*tan(f*x + e)^3) - 6*(b*tan(f*x + e)^2 + a)^(5/2)/(a*tan(f*x + e)^5))/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}}{{\sin \left (e+f\,x\right )}^6} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x)^2)^(3/2)/sin(e + f*x)^6,x)

[Out]

int((a + b*tan(e + f*x)^2)^(3/2)/sin(e + f*x)^6, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**6*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________